یک روش نقطه-درونی اولیه-دوگان بهنگام سازی بزرگ دینامیکی برای بهینه سازی خطی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم
- author نسرین حسین پور
- adviser بهروز خیرفام
- Number of pages: First 15 pages
- publication year 1393
abstract
روش های نقطه-درونی اولیه-دوگان برای حل بسیاری از مسائل بهینه سازی موثر می باشند، از لحاظ تئوری بهترین کران پیچیدگی شناخته شده برای الگوریتم های با طول گام کوتاه، در مقایسه با الگوریتم ها ی بهنگام سازی بزرگ بهتر است ولی در عما الگوریتم های بهنگام سازی بزرگ موثر واقع شدند که این پدیده را شکاف بین تئوری و عنل می نامند. در این پایان نامه ابتدا برخی ویژگی های تابع نزدیکی خود-منظم برای مسائل بهینه سازی خطی بیان می شود که توسط رس و همکاران مطرح گردیده است. توابع نزدیکی خود-منظم خاص که ما در این جا از آن ها استفاده می کنیم، دارای ویژگی های خاصی هستند این ویژگی ها سبب می شوند که وقتی تکرار کنونی در یک همسایگی بزرگ از مسیر مرکزی قرار داشته باشد، تنها انتخاب طبیعی برای بهنگام سازی، بهنگام سازی بزرگ باشد. ما این نتایج را برای طرح یک روش نقطه-درونی برپایه توابع خود-منظم خاص ?_1,3 و ?_1,q به کار می بریم و نشان می دهیم که این روش می تواند همانند روش های نقطه-درونی استاندارد، تغییرهای شکاف دوگانی را پیش بینی کند. روش ارائه شده یک روش بهنگام سازی بزرگ دینامیکی در همسایگی بزرگ بوده که برخلاف روش های بهنگام سازی بزرگ پیشین از هیچ تکرار داخلی برای بهبود مرکزیت استفاده نمی کند. کران تکرار در بدترین حالت برای این روش o(qn^((q+1)/2q) log?(n/?))می باشد، که q پارامتر مانع اندازه نزدیکی خود-منظم می باشد. برای q=log n این الگوریتم بهترین کران پیچیدگی را برای روش های بهنگام سازی بزرگ، یعنی o(?(n ) log?n log?(n/?))ا نتیجه می دهد. همچنین برای تابع نزدیکی ?_1,3 کران پیچیدگی در بدترین حالت، یعنی o(n^(2/3) log?(n/?)) را به دست می آوریم
similar resources
یک روش نقطه درونی اولیه - دو گان گام وفقی برای حل مسائل بهینه سازی خطی
در حل مسائل بهینه سازی خطی به روش نقطه درونی توابع هسته نقش مهمی ایفا می کنند. در این پایان نامه به معرفی چند دسته از توابع هسته پرداخته یک روش گام وفقی را با استفاده از یک تابع هسته معرفی می نمائیم. و نشان می دهیم بهترین پیچیدگی محاسباتی با استفاده از این روش از مرتبه رادیکال ان تاو لگاریتم ان اپسیلون می باشد که تا کنون به دست آمده است.
15 صفحه اولیک الگوریتم نقطه درونی اولیه-دوگان فضای پوچ برای بهینه سازی غیر خطی با خصوصیات همگرایی خوب
در این پایان نامه یک الگوریتم نقطه درونی اولیه- دوگان فضای پوچ برای حل مسایل بهینه سازی غیر خطی با قیدهای مساوی و نامساوی کلی ارائه می دهیم. الگوریتم بطور تقریبی یک دنباله از زیر مسأله های مانع محدود شده مساوی را بوسیله محاسبه یک گام فضای برد و یک فضای پوچ در هر تکرار حل میکند. تابع جریمه به عنوان تابع شایستگی فرض می شود. تحت هر شرایط ملایم روی گام های فضای برد و هسی تقریبی بدون فرض هیچ نظمی ثا...
15 صفحه اولروش های نقطه درونی نشدنی اولیه-دوگان اصلاح شده با گام کامل نیوتن برای مسائل بهینه سازی خطی
روش های نقطه درونی یکی از موثرترین روش ها برای حل مسائل بهینه سازی خطی می باشند که به دو روش نقطه درونی شدنی و نقطه درونی نشدنی تقسیم می شوند. روش نقطه درونی شدنی با یک نقطه درونی شدنی اکید شروع می شود و شدنی بودن را در طول الگوریتم حفظ می کند. پیدا کردن یک نقطه شدنی آغازین از دشوارترین بحث روش نقطه درونی شدنی است. یکی از روش هایی که بر این دشواری غلبه کرد روش همگن معرفی شده توسط یی foot...
15 صفحه اولالگوریتم های نقطه درونی اولیه -دوگان برای بهینه سازی مخروط مرتبه دوم بر اساس توابع هسته
در این پایان نامه ، الگوریتم های نقطه درونی اولیه – دوگان برای بهینه سازی مخروط مرتبه دوم ، بر پایه توابع هسته متنوع ارائه می شود. و توابع هسته پیچیدگی بهتری را نتیجه می دهند، لذا از اهمیت زیادی برخوردارند. این دسته از توابع هسته ، قبلا" در بهینه سازی خطی بررسی شده است . کران های تکرار برای روش های بهنگام سازی بزرگ و کوچک o(?n log?n)log??n/?? و o(?n)log??n/?? بوده که n عدد مخروط مرتبه دوم در تد...
15 صفحه اولالگوریتم نقطه درونی اولیه-دوگان برای بهینه سازی نیمه معین محدب درجه دو
در این پایان نامه، الگوریتم نقطه درونی اولیه-دوگان جدیدی را برای حل حالت خاصی از مسئله ی بهینه سازی نیمه معین محدب درجه دو، مبتنی بر تابع هسته بیان می کنیم. تابع هسته پارامتری ارائه شده در بدست آوردن جهت های جستجو ی جدید و همچنین اندازه گیری فاصله ی بین نقاط تکرار داده شده از µ-مرکزدر الگوریتم مورد استفاده قرار می گیرد. این خاصیت ها ما را قادر می سازد تا بهترین کران تکرار شناخته شده را برای ال...
الگوریتم های اولیه – دوگان نقطه درونی برای مسائل بهینه سازی نیمه معین بر اساس یک تابع هسته ای
در این رساله ما روش های نقطه درونی (ipms) را برای مسائل بهینه سازی نیمه معین (sdo) مطالعه می کنیم. ipms برای مسائل sdo به علت پیچیدگی چند جمله ای و کارایی اجرایی آن ها به وفور مورد مطالعه قرار گرفته اند. sdo به عنوان یک مسئله ی بهینه سازی مخروطی (co)، یک مسئله ی بهینه سازی محدب روی اشتراک یک مجموعه ی آفین و مخروط ماتریس های نیمه معین مثبت می باشد. این رساله شامل پنج فصل می باشد. در فصل 1، ا...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023